
Subject: Microprocessors

Program Control Instructions

 By:

 Dr. Vandana Gandotra

 Deptt of Computer Science

 Ram Lal Anand College

 Program Control Instructions 2

Introduction
Program control instruction :

direct the flow of a program, allow the flow to change

jumps, calls, returns, interrupts, machine control

instructions

Change in flow :

CMP, TEST followed by conditional jump

Relational assembly language statements :

.IF, .ELSE, .ELSEIF, .WHILE, .ENDW, .REPEAT,

.UNTIL

MASM, TASM Ver.6X ~

allow to develop control flow portions of program with

C/C++ language efficiency

3

The Jump Group
JMP(jump) : allow to skip sections of a program and

blanch to any part of memory for next instruction

unconditional jump, conditional jump

three type unconditional jump : Fig. 6-1

 Program Control Instructions 4

Unconditional Jump(JMP)

Intrasegment jump : short, near jump

Short jump(2-byte): 1 byte disp.(within +127~-128 byte)

Near jump(3-byte) : 2 byte disp.(within 32K bytes or

anywhere in current code segment)

Segments : cyclic in nature

Intersegment, far jump(5-byte) :

any memory location within the real memory system

80386~ (in protected mode)

Near(5-byte) : 4 byte displacement(within 2G bytes)

Far(7-byte) : 4 byte(EIP), 2 byte(CS)

Program Control Instructions 5

Short Jump

Short jump : relative jump

distance or displacement : follow the opcode

One-byte signed number(+127~-128) :

sign-extended and added to IP/EIP

to generate the jump address within current code segment

EX. 6-1 :

Label : symbolic name for memory address

SHORT directive : force a short jump

most assembler : choose best form of jump instruction

JMP START : assemble as a short jump

Ch.6 Program Control
Instructions 6

Short Jump

1st jump : 0020H – 0009H = 0017(disp. = 17H)

2nd jump : 0002H – 0024H = FFDEH(disp. = DEH)

Program Control Instructions 7

Fig. 6-2

Fig. 6-2

Program Control Instructions 8

Near, Far Jump

Near jump : relocatable because relative jump

signed displacement : added to IP/EIP to generate

the jump address

2 byte : 32K bytes in current code segment

4-byte(386~ in protected mode) : 2G bytes

Far jump : 5(7, 80386~) byte instruction

new offset address(IP/EIP) : byte 2,3(2~5)

new segment address(CS) : byte 4,5(6,7)

80286~ in protected mode : CS access a descriptor

that contain base address of far jump segment

Program Control Instructions 9

Fig. 6-3

Fig. 6-3

Program Control Instructions 10

Example: Near Jump
E9 0200 R JMP NEXT : only list file

R : denote a relocatable jump address of 0200H

actual machine code : E9 F6 01

0200H - 000AH = 01F6H

Program Control Instructions 11

Fig. 6-4

Fig. 6-4

12

Example

Far jump : FAR PTR directive, far label

Far label : external to current code segment

EXTRN UP:FAR directive

a global label as a double colon(LABEL::)

----E : external. filled in by linker when links program files

Program Control Instructions 13

Indirect Jump

Jump with 16-, 32-bit reg. operand : indirect jump

contents of reg. : transferred directly into IP/EIP

JMP AX : IP ← AX, JMP EAX : EIP ← EAX

EX. 6-4 : how JMP AX access jump table

read a key, converted ASCII to binary, doubled

jump table : 16-bit offset address

Indirect Jumps using Index : double-indirect jump

[] form of addressing to directly access jump table

near jump JMP TABLE[SI] : IP ← [SI+TABLE]

far jump JMP FAR PTR [SI], JMP TABLE [SI] with

TABLE data defined DD directive

14

EX. 6-4

EX. 6-4

15

EX. 6-5

EX. 6-5

Program Control Instructions 16

Conditional Jumps

Conditional jump : short jump

~ 80286(short jump) : +127 ~ -128

80386 ~(short, near jump) : 1, 4 bytes

Test one flag bit or some more : S, Z, C, P, O

if condition under test is true : branch to the label

if condition is false : next sequential instruction

Relative magnitude comparisons :

require more complicated conditional jump instructions

that test more than one flag bit

Table 6-1 : conditional jump instructions

17

Table 6-1

Table 6-1

Program Control Instructions 18

Fig. 6-5 : order of signed, unsigned 8-bit no.s

Program Control Instructions 19

Conditional Jumps

Unsigned : FFH is above 00H, above, below, equal

Signed : FFH less than 00H, greater, less, zero

Alternate form :

JE = JZ

JA(if above) = JNBE(if not below or equal)

JCXZ(jump if CX = 0), JECXZ(jump if ECX=0)

if CX/ECX = 0 : jump occur

if CX/ECX <> 0 : no jump occur

EX. 6-6 : search table for 0AH using SANSB, JCXZ

Program Control Instructions 20

Example: Conditional Jump

EX. 6-6

Program Control Instructions 21

Conditional Set Instructions

Conditional set instructions :

80386~

set a byte to either a 01H or clear a byte to 00H

useful where a condition must be tested at a point much

later in the program

SETNC MEM :

places a 01H into memory location MEM if carry is

cleared and

a 00H into MEM if carry is set

Table 6-2 :

22

Table 6-2

Table 6-2

Program Control Instructions 23

LOOP, Conditional LOOP
LOOP : combination of decrement CX and JNZ

~ 80286 : DEC CX ; if CX <> 0, jump to label if

CX = 0, execute next sequential instruction

80386 ~ : CX/ECX depending on instruction mode

LOOPE(loop while equal, LOOPZ) :

jump if CX <> 0 while equal condition exist

exit the loop if CX = 0 or condition is not equal

LOOPNE(loop while not equal, LOOPNZ) :

jump if CX <> 0 while not-equal condition exist

exit the loop if CX = 0 or condition is equal

LOOPEW/LOOPED,LOOPNEW/LOOPNED:override mode

24

EX. 6-7

EX. 6-7 :

Program Control Instructions 25

Controlling the Flow of an Assembly
Language Program

Relational statements

.IF, .ELSE, .ELSEIF, ENDIF, .REPEAT-

.UNTIL, .WHILE-.ENDW :

easier to control the flow than conditional jump

EX. 6-8 : testing system for version of DOS

DOS INT 21H, function no. 30H : read DOS ver.

(a) : source program, (b) fully expended assembled

* : assembler-generated and -inserted statements

&& : logical AND

Table 6-3 : relational operator

Program Control Instructions 26

Table of Operators and their Functions

Table 6-3

27

Example
EX. 6-10 : read a key, convert to hexadecimal
`a`(61H), `A`(41H) : 61H(41H)-57H(37H)=0AH

Program Control Instructions 28

DO-WHILE Loops

.WHILE statement : used with a condition to

begin the loop

EX. 6-11 : read a key, store into array called BUF

until enter key(0DH) is typed

DOS 21H, fn no. 09H

29

EX. 6-11

EX. 6-11

Program Control Instructions 30

REPEAT-UNTIL Loops

.REPEAT : defined start of loop

.UNTIL : defined end of loop, contained condition

EX. 6-14 : EX. 6-11,12

31

EX. 6-14

EX. 6-14

Questions

Q1: Contrast the operation of JMP DI with JMP [DI].

Q2: What is the purpose of .BREAK directive?

Q3: Explain how the LOOPE instruction operates.

Q4: What happens if the .WHILE instruction is placed in a

 program?

Q5:When does JCXZ instruction jump?

Q6: Write a program that reads the keyboard and converts all

 lowercase data to uppercase before displaying it.

Q7: Develop a short sequence of instruction that uses

 DO-WHILE Loop

 REPEAT-UNTIL Loop

Program Control Instructions 32

